Skip to content

Data processing

Pyomeca's main functionality is to offer dedicated biomechanical routines.

api

These features can be broadly grouped into different categories: filtering, normalization, matrix manipulation, signal processing and file output functions.

Filters

Biomechanical data are inherently noisy. And with noise, you will probably need filters. Pyomeca implements the major types of Butterworth filters used in biomechanics.

Example

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.band_pass

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.band_stop

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.high_pass

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.low_pass

Normalization

It is common to use normalization procedures during biomechanical signal processing. Pyomeca supports two types of normalization: signal normalization and time normalization.

Example

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.normalize

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.time_normalize

Matrix manipulation

The processing of biomechanical data often involves the use of matrix manipulation routines. Some of them are implemented in Pyomeca.

Example

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.abs

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.center

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.matmul

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.norm

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.rms

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.square

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.sqrt

Signal processing

Pyomeca implements convenient and flexible functions to detect onsets and outliers, as well as to compute a Fourier Transform.

Example

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.detect_onset

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.detect_outliers

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.fft

File output

While the netcdf format is the preferred file format for saving or sharing data structures, Pyomeca also supports writting csv and matlab files. If you need more flexibility, the to_wide_dataframe method will allow you to use the pandas library to export your data in almost any existing formats.

Example

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.to_csv

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.to_matlab

/api/dataarray_accessor/#pyomeca.dataarray_accessor.DataArrayAccessor.to_wide_dataframe